Sunday, 13 August 2017

If ‘T’ is the surface tension of a fluid, the energy needed to break a liquid drop of radius ’R‘ into 64 equal drops would be?

Solution:
The required energy to break the bigger droplet into 64 smaller droplets=change in surface areaX surafce tension(T)
Change in surface area= 64X4πr^2-4πR^2------------(1)
                              64X4/3πr^3=4/3πR^3
                                         =>  r=R/4
                                         =>  r^2=R^2/16-----------------(2)
Substituting value of r^2 in (1) from(2),
                                         Change in surface area= 12πR^2
So, the energy required to break the bigger droplet into 64 smaller droplets= (12πR^2)T----Ans

Friday, 7 July 2017

The temperature of a gas contained in a closed vessel increases by 1 degree Celsius when pressure of the gas is increased by 1%. The initial temperature of the gas is ?

Solution: according to Boyle's law, PV=nRT
Let, initially the gas had pressure=P, volume=V, No. of moles=n and temperature=T degree Celsius
Therefore, the initial temperature in Kelvin scale is T + 273degree
After increasing 1 degree Celsius the pressure increased by 1%. Hence, the new temp. is=T+1+273
                                                                                                                                             =T+274K
and new pressure=(101/100)*P
In summery, PV=nR(T+273)So, PV/nR=T+273--------------1
                     (101/100)*PV=nR(T+274),So (101/100)*PV/nR=T+274-------------2
substituting PV/nR value from equation 1 in equation 2,
(101/100)*(T+273)=T+274
T=-173 degree=100K(-173+273)---answer

Sunday, 25 June 2017

cos-1 ([x2-1]/[x2+1]) + tan-1[(2x)/(x2-1)] =2π/3, then x=?

Q. cos-1 ([x2-1]/[x2+1]) + tan-1[(2x)/(x2-1)] =2π/3, then x=?
Solution: Let,
cos-1 ([x2-1]/[x2+1]) =θ-------------------1
→cos θ= (x2-1)/(x2+1)
→cos2 θ=(x2-1)2/(x2+1)2
→1- cos2θ=1-(x2-1)2/(x2+1)2
              =[(x2+1)2-(x2-1)2]/ (x2+1)2
              = [2x2X 2]/(x2+1)2
→Sin2θ= 4x2/(x2+1)2
→sin θ=[2x]/(x2+1)

→sin θ/ cos θ=2x/(1-x2) =tan θ
→θ=tan-12x/(1-x2) --------------------------2
From 1 and 2,
→cos-1 ([x2-1]/[x2+1]) + tan-1[(2x)/(x2-1)] =2π/3
→2 θ= 2π/3
→θ= π/3
so, cos θ= (x2-1)/(x2+1) =cos π/3
 → (x2-1)/(x2+1) =1/2
→X2+1=2-2x2
→3x2-1=0
→ (√3x+1) (√3x-1) =0

So, x=±1/√3(Ans)

Wednesday, 21 June 2017

sin-1 x+sin-1 y+sin-1 z=π then x2+y2+z2+2xyz=?

sin-1 x+sin-1 y+sin-1 z=π then x2+y2+z2+2xyz=?
Solution:
Let A = sin^-1(x), B= sin^-1( y) , C = sin^-1( z ) ,
=> X=Sin A, Y=Sin B, Z=Sin Z 
then given A+B+C = pi/2,
=>A+B= pi/2-C
Apply cos on either side  
=>Cos(A+B) = Cos (pi/2 - C) = sin C
=>Cos A. Cos B - sin A. sin B = sin C
=>Cos A. cos B = sin A. sin B + sin C
=>√ (1 - x²) √(1 - y²) = xy+z [squaring both  sides]
=>1 - x² - y² + x² y² = x² y² + z² + 2xyz

=> x^2 +y^2 +z^2 +2xyz = 1 (Answer)

Saturday, 17 June 2017

If the distance between the parallel lines x+2y+3=0 and x+2y+k=0 is √5, then the value of k is?

Q.If the distance between the parallel lines x+2y+3=0 and x+2y+k=0 is √5, then the value of k is?
Solution:
 As shown in the graph the given two lines, their slopes, the perpewndicular distance between two lines and the coordinates of various points which would immideatly help solving this question given,
              The perpendicular distance between two lines(AB)=√5

               The value of tanθ= 1/2 = slope of two lines
In the triangle ABC,      tanθ=1/2=[√5]/BC, Therefore, BC=2√5
                                       AC^2    =AB^2+BC^2
                                       (k-3)^2 =(√5)^2+(2√5)^2
                Therefore,                k  = 8(ans)


                                                                                                                      -Mimansa

       

Monday, 10 April 2017

Square ABCD ha side length 13, and points E and F are exterior to the square such that BE=DF=5 and AE=CF=12. Find EF2

Q. Square ABCD ha side length 13, and points E and F are exterior to the square such that BE=DF=5 and AE=CF=12. Find EF2.

Solution:
Complete the sqaure EGFH,then find out (EF)2=(17√2)2 =578(Ans)




A piece of ice with a stone frozen into it, is floating in a glass vessel filled with water. If the ice melts completely, then level of water in the vessel will

Solution : Volume of melted ice=water  is less than ice ,then stone volume would remain unchanged ,therefore ,the level of water would fal...