sin-1 x+sin-1 y+sin-1 z=π then x2+y2+z2+2xyz=?
Solution:
Let A = sin^-1(x), B= sin^-1( y) , C = sin^-1( z ) ,
=> X=Sin A, Y=Sin B, Z=Sin Z
then given A+B+C = pi/2,
=>A+B= pi/2-C
Apply cos on either side
=>Cos(A+B) = Cos (pi/2 - C) = sin C
=>Cos A. Cos B - sin A. sin B = sin C
=>Cos A. cos B = sin A. sin B + sin C
=>√ (1 - x²) √(1 - y²) = xy+z [squaring both sides]
=>1 - x² - y² + x² y² = x² y² + z² + 2xyz
=> x^2 +y^2 +z^2 +2xyz = 1 (Answer)
No comments:
Post a Comment