Q. cos-1 ([x2-1]/[x2+1]) +
tan-1[(2x)/(x2-1)] =2π/3, then x=?
Solution: Let,
cos-1 ([x2-1]/[x2+1]) =θ-------------------1
→cos θ= (x2-1)/(x2+1)
→cos2 θ=(x2-1)2/(x2+1)2
→1- cos2θ=1-(x2-1)2/(x2+1)2
=[(x2+1)2-(x2-1)2]/
(x2+1)2
= [2x2X
2]/(x2+1)2
→Sin2θ= 4x2/(x2+1)2
→sin θ=[2x]/(x2+1)
→sin θ/ cos θ=2x/(1-x2) =tan θ
→θ=tan-12x/(1-x2)
--------------------------2
From 1 and 2,
→cos-1 ([x2-1]/[x2+1]) + tan-1[(2x)/(x2-1)]
=2π/3
→2 θ= 2π/3
→θ= π/3
so, cos θ= (x2-1)/(x2+1) =cos π/3
→ (x2-1)/(x2+1)
=1/2
→X2+1=2-2x2
→3x2-1=0
→ (√3x+1) (√3x-1) =0
So, x=±1/√3(Ans)
This comment has been removed by the author.
ReplyDelete