Saturday, 27 August 2016

The given figure shows sector OAB with centre O and radius 54cm. Another circle XYZ with centre P, is enclosed by the sector OAB.the angle AOB=60 degree . Find the area of OXPY.












Soln: Given: sector OAB with centre O and radius 54cm.
                      <AOB=600
                        OZ=OB=OA=54cm
Construction: join O and P.
Let XP=r, then OP=54-r
In ΔOXP  right angled at X,
        <XOP=300
          Sin300=XP/OP=r/54-r=1/2     then r=18cm-----------(1)
          OP=54-18=36cm
          So,XP2+OX2=OP2
          182+OX2=362 => OX=183cm---------------(2)
Area of OXPY quadrilateral=2xarea of ΔOXP

                                              =2x ½ x 183 x 18 = 561.2cm(ans.)

Comment: The radius of a circle drawn inside a sector is 1/3 of the mother circle







       

If the roots of the quadratic equation x^2+Px+q=0 are tan30 and tan15 respectively ,then the value of 2+q-p is --------------------------------



















Solution :tan(A+B)=tanA+tanB/1-tanA.tanB
then ,tan45 degree=tan30+tan15/1-tan30.tan15
then tan30+tan15+tan30.tan15=1
Then  2+q-p=2+tan30+tan15+tan30.tan15=3(Answer)

Monday, 15 August 2016

Three containers have their volume in ratio 3:4:5. They are full of mixtures of milk and water. The mixtures contain milk and water in the ratio of (4:1), (3:1) and (5:2) respectively. The contents of all these three containers are poured into a fourth container. The ratio of milk and water in the fourth container is

                                                                                                                                                                                                                                                                                                                                        Three containers have their volume in ratio 3:4:5. They are full of mixtures of milk and water. The     mixtures contain milk and water in the ratio of (4:1), (3:1) and (5:2) respectively. The contents of all these three containers are poured into a fourth container. The ratio of milk and water in the fourth container is?
A. 4:1
B. 151:48
C. 157:53
D. 5:2
                                                                                                                                                                                                                                                                                                                                        Ans: Let the ratio of milk and water in the first container be,
                                   M1/W1=4/1
        The ratio of milk and water in the second container be,              
                                   M2/W2=3/1
        The ratio of milk and water in the third container be,
                                   M3/W3=5/2
        Since, the three containers are in the ratio 3:4:5,
        
         In the first container,
                                   M1+W1=3x---------(1)
                                   M1/W1=4/1
                               => M1=4W1-------------------(2)
              Substituting (2) in (1),
                                   4W1+W1=3x
                               => 5W1=3x
                               => W1=3x/5-----------(3)
               Substituting (3) in (1) we get,
                                   M1=12x/5
         In the second container,
                                 M2+W2=4x---------(4)
                                   M2/W2=3/1
                               => M2=3W2------------------(5)
               Substituting (5) in (4) we get,
                                   3W2+W2=4x
                                   4W2=4x
                                   W2=4x/4=x---------(6)
                Substituting (6) in (4) we get,
                                   M2=3x

       In the third container,
                                   M3+W3=5x---------(7)
                                   M3/W3=5/2
                               => 2M3=5W3
                               => M3=5W3/2---------(8)
                Substituting (8) in (7) we get,
                                   5W3/2+W3=5x
                               => 5W3 +2W3/7=5x
                               => 7W3=10x
                               => W3=10x/7----------(9)
                Substituting (9) in (7),
                                   M3=25x/7
       Since all three mixtures are poured into the fourth container,
                            M4=M1+M2+M3 and
                            W4=W1+W2+W3
.: M4=12x/5 + 3x + 25x/7
       =84x+105x+125x/35
       =314x/35
.: W4=3x/5 + x +10x/5
        =21x + 35x + 50x/35
        =106x/35
M4/W4=314x/35÷106x/35
            =157/53
           =157:53(answer)


Friday, 12 February 2016

(3x-1)^7, then addition of all cofactors is =?

Question :(3x-1)7, then addition of all cofactors is =? if cofactors are A7,A6,A5,A4,A3,A2,A1,A0
Solution
1.       3x-1=3x-1
2.       (3x-1)2=9x2−6x+1
3.       (3x-1)3=27x3−27x2+9x−1
4.       (3x-1)4=81x4−108x3+54x2−12x+1
5.       (3x-1)5 =243x5−405x4+270x3−90x2+15x−1
6.       (3x-1)6 =729x6−1458x5+1215x4−540x3+135x2−18x+1
7.       (3x-1)7 =2187x7−5103x6+5103x5−2835x4+945x3−189x2+21x−1
  Key to answer :Addition of An,A(n-1),A(n-2).............A0=2^n

Algebra
Cofactors for the algebraic expression (3x-1)

A7
A6
A5
A4
A3
A2
A1
A0
Total
3x-1






3
-1
2
(3x-1)2





9
-6
1
4
(3x-1)3




27
-27
9
-1
8
(3x-1)4



81
-108
54
-12
1
16
(3x-1)5


243
-405
270
-90
15
-1
32
(3x-1)6

729
-1458
1215
-540
135
-18
1
64
(3x-1)7
2187
-5103
5103
-2835
945
-189
21
-1
128

Thursday, 11 February 2016

If the polynomial 16X4—24X3+41X2-mx+16 is a perfect square, then find the value of m (A)12 (B) -12 (C) 24 (D) -24


If the polynomial 16X4—24X3+41X2-mx+16 is a perfect square, then find the value of m


(A)12 (B) -12 (C) 24 (D) -24
Solution :Let find it using division method to find square root of an algebraic expression











Tuesday, 9 February 2016

A does half as much work as B in three-fourth of the time. If together they take 18 days to complete the work, how much time shall B take to do it?



A does half as much work as B in three-fourth of the time. If together they take 18 days to complete the work, how much time shall B take to do it?

(A) 30 days

(B) 35 days

(C) 40 days

(D) None of these

Solution:
1.  Let B does the work in B days, then B in 1 day will do 1/B part of work
2.  A takes three-fourth of working days of B to do half of work done by B, therefore A in 3/4XB days will do 1/2 work, then in 1 day A would do 1/2÷3/4XB=2/3B part of work
3.  A and B together in 1 day will do =1/B+2/3B=5/3B part of work
4.  As given, A and B do 1 work in 18days, then A and B together in 1 day will do 1/18 part of the work
5.  Therefore, looking at step 3 and 4 ,5/3B=1/18, THEN B=30DAYS (Answer)

Monday, 1 February 2016

The ratio of the incomes of P and Q is 5 : 4 and the ratio of their expenditures is 3 : 2. If at the end of the year, each saves 1600, then the income of P is

The ratio of the incomes of P and Q is 5 : 4 and the ratio of their expenditures is 3 : 2. If at the end of the year, each saves 1600, then the income of P is=?

Solution :
1.       Let income of P and Q are PI and QI,then PI/QI=5/4,THEN QI=4/5.PI
2.       Let expenditure of P and Q are PE and QE,then PE/QE=3/2 ,THEN PE=3/2.QE
3.       Saving =Income -expenditure
4.       Saving of P is PI-PE=1600 AND QI-QE=1600, then QE=QI-1600
5.       We need income of P=PI
   From above (4) we know PI-PE=1600, Then replacing PE value from above (2), PI-3/2XQE=1600, then replacing QE from above (4), PI-3/2(QI-1600) =1600, then replacing QI from above (1), PI-3/2(4PI/5-1600) =1600, then PI-12PI/10+2400=1600, then -2PI/10=-800, then 2PI=8000, then PI=4000(ANSWER). 

A piece of ice with a stone frozen into it, is floating in a glass vessel filled with water. If the ice melts completely, then level of water in the vessel will

Solution : Volume of melted ice=water  is less than ice ,then stone volume would remain unchanged ,therefore ,the level of water would fal...